The Weil Representations of the Jacobi Group

نویسنده

  • JAE-HYUN YANG
چکیده

The Jacobi group is the semi-direct product of the symplectic group and the Heisenberg group. The Jacobi group is an important object in the framework of quantum mechanics, geometric quantization and optics. In this paper, we study the Weil representations of the Jacobi group and their properties. We also provide their applications to the theory of automorphic forms on the Jacobi group and representation theory of the Jacobi group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations of Double Coset Lie Hypergroups

We study the double cosets of a Lie group by a compact Lie subgroup. We show that a Weil formula holds for double coset Lie hypergroups and show that certain representations of the Lie group lift to representations of the double coset Lie hypergroup. We characterize smooth (analytic) vectors of these lifted representations.

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

Jacobi Forms of Critical Weight and Weil Representations

Jacobi forms can be considered as vector valued modular forms, and Jacobi forms of critical weight correspond to vector valued modular forms of weight 1 2 . Since the only modular forms of weight 1 2 on congruence subgroups of SL(2,Z) are theta series the theory of Jacobi forms of critical weight is intimately related to the theory of Weil representations of finite quadratic modules. This artic...

متن کامل

Applications of the Jacobi Group to Quantum Mechanics

Infinitesimal holomorphic realizations for the Schrödinger-Weil representation and the discrete series representations of the Jacobi group are constructed. Explicit expressions of the basic differential operators are obtained. The squeezed states for the unitary irreducible representation of the Jacobi group are introduced. Matrix elements of the squeezed operators, expectation values of polyno...

متن کامل

Theta Series Associated with the Schrödinger-weil Representation

In this paper, we define the Schrödinger-Weil representation for the Jacobi group and construct covariant maps for the Schrödinger-Weil representation. Using these covariant maps, we construct Jacobi forms with respect to an arithmetic subgroup of the Jacobi group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009